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ABSTRACT / 2.~t
The development of a predictive method for determining the

steady inviscid aerodynamic behavior of ballistic projectiles
throughout the transonic range is reported. The development has
been directed toward establishing the theoretical capability for

I predicting the static stability characteristics of both the scan-
4 dard conical boattail projectiles as well as a variety of new

nonaxisymmetric boattail shapes under study by the U.S. Army.
The theoretical procedure employs the classical transonic equi-
valence rule together with a new loading calculation method which
is based on apparent mass concepts and makes use of the nonlinear
equivalence rule flow solutions. Theoretical results for surface
pressures, loadings, and static aerodynamic characteristics are
presented throughout the transonic range for a variety of projec-
tiles. Comnarisons are irade both with other theoretical methods
as well as with experimental results and verify the accuracy of
the procedure. Future extension and application of the overall
procedure to missile stability and performance is suggested and

-, discussed.

S/ INTRODUCTION

Se Current projectiles used by the Army are generally slender, spin-stabil-

ized bodies of revolution. The boattail :onfiguration which has become the
Sstandard is a conical shape with a relatively shallow cone angle 'V(5-10 0).

The primary purpose of any boattail is Lu increase the projectile range by
reducing drag from what it would be without boattailing and with the projec-
tile afterbody a straight cylindrical shapL- (Fig. 1). While a drag reduc-

tion is effectively accomplished, mainly through the reduction in base area, a
subsequent detrimental result of such a geometric change is the creation of

a negative lift on the boattail. This tends to increase even further the
destabilizing pitching moment, which already exists due to positive lift on
the nose, and consequently acts to reduce additionally the gyroscopic sta-
bility of the projectile. At flight speeds within the transonic range, which
usually occur near ballistic trajectory apex, the negative loading on the
boattail is strongly augmented due to the appearance and movement of shock

~ waves on the aft portion of the boattil. This results in a rapid peaking att flight Mach numbers just below one in the destabilizing pitching moment as

0_6 well as a similar behavior in other aerodynamic characteristics. Insofar as "
the aerodynamic derivatives are concerned, this nonlinear behavior due toshock formation and motion is the dominant fluid dynamic characteristic of

ballistic projectile flows in the transonic speed regime.
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In this regard, and as noted previously! the relative simplicity of
basic projectile shapes - which typically consist of an ogive nose followed
by a straight cylindrical section and a conical boattail - is deceptive.
This is so because the locations where these sections join normally have
discontinaities in surface slope and/or curvature; and it is precisely these
discontinuities which induce the shock patterns and subsequent sensitive
aerodynamic behavior in the transonic range.

In an effort to reduce the adverse transonic behavior of ballistic
projectiles, the Army has recently investigated experimentally? a series of
nonaxisymmetric boattail shapes. Some of these nonstandard shapes were found
to improve significantly the projectile aerodynamic characteristics over
those of the conical configuration. In particular, it was found that both
increased gyroscopic and dynamic stability and decreased drag could be
attained simultaneously, so that for the first time projectile designs were
feasible which not only provide increased range over the standard boattail

shapes but also improved stability.

The present work describes the development of a theoretical method for
* predicti the transonic static aerodynamic characteristics of these projec-

tiles. The objective has been the enablement of a rational modeling of the
aerodanmic effects of incorporating different axisymmetric and nonaxisym-
metri. boattail geometries into ballistic projectile design with a view
toward optimizing the aerodynamic performance of these shapes. The theo-
retical analysis for determining the nonlinear three-dimensional projectile
flow fields is based on the classical transonic equivalence rule (TER); and
employs finite-difference successive line over-relaxation (SLOR) solutions
of the axisymmetric transonic small-disturbance potential equation for the
outer nonlinear flow region, and finite-element solutions of the cross
flow Laplace equation to determine the nonaxisymmetric inner flow region.

A new loading ca)culation method which is based on apparent mass

concepts and which makes use of nonlinear equivalence rule flow solutions is
used to predict the static aerodynamic coefficients. Theoretical results
for surface pressures, loadings and static aerodynamic coefficients are
presented for a variety of projectiles with different boattail geometries
at Mach numbers throughout the transonic range. Comparisons are made
insofar as possible with both othei theoretical methods and experimental

results...

ANAL'YSIS

GENERAL

The most notable feature of tiansonic flow past typical ballistic
projectiles is the formation and movement as a function of oncoming Mach
number of a variety of shock waves both on the surface an in the flow field
of these configurations. This is clearly evident in shadowgraphs such as
those shown in Figure 2, which illustrate the characteristic shock formation
and movement on such shapes as the Mach number increases beyond subcritical.
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The result of the rapid formation and movement of shock waves on the
aerodynamic characteristics of typical projectiles in the transonic regime
is a sharp peaking in their behavior in the vicinity of M = 1. As indicated

in the sketches in Figure 3, both the overturning pitching moment coefficient
and drag strongly exhibit this behavior. With regard to pitching moment, the
sketch in Figure 3 displaying a typical projectile shock pattern illustrates
clearly why this occurs. At angle of attack, the shock positions on the
windward surface are displaced farther aft than on the leeward side, resulting

in a strong negative loading at those axial locations. Both shock strengths.-
and negative loading are strongest by a considerable amount for the boattail
shock. As the Mach number increases and the boattail shock moves further

aft, both the strength of the negative loading and its moment arm from the
center of mass cf the projectile increase, and result in a peak pitching
moment occurring just prior to the shock moving off the boattial. This
inevitably occurs at a Mach number just below one. As the Mach number
increases beyond that value, the destabilizing pitching moment decreases3 rapidly and usually smoothly, and then eventually plateaus as the Mach number
increases further supersonically.

BASIC EQUATIONS AND BOUNDARY CONDlITONS

The coordiiate system employed in the analysis is a body-fixed Cartesian
- system with origin at the nose of the configuration, and orientation such

that the x axis is directed downstream and conincident with the longitudinal
body axis, and the v axis to the right facing forward, and the z axis
directed vertically upward, as illustrated in Figure 4. The oncoming freu-
stream may be inclined in pitch to the A axis at some arbitrary smail anglel ,
a) , but sideslip has not been considered. The flow is assumed to be inviscid
and steady, and the configurations sufficiently slender and smooth that the
resulting flow field is irrotational and adequately treated by small-distur-
bance theory. Accordingly, a disturbance velocity potential q can be
defined by:"

q,(x,y,z) = UCi[x + Lz + y(x,y,z)] (1)

- where ¢ is the total velocity potential, U reprnsents the freestream

velocity, i is the body length, and the coordinates (..,y,z) have been nondi-
mentionalized by K. The governing partial diffcrential equation for
appropriate for the low-lift slender contigurations considered, is given by:

(1-M)>t + y + f x- ft (N+l)Kt (2)

yy x; x 2
a -i

We note that the quadratic terms (0 2 +q.2), which usually appear',W within

the bracket on the right-hand side Yo account for situations where the lift
is significant, are of higher order and negligible for the thickness-dominated

I situations of interest here. For the body-fixed coordinate system shown CT
in Figure 4, the expression for the pressure coefficient is given by:

Cp = - 2o•x+ntz) _ (d2+p 2 ) (3)

I d/o
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In general, the boundary conditions to be satisfied consist of: (1) far-field
conditions appropriate to the behavior of the flow far removed from the body
in either a free-air flow or in a wind tunnel environment; (2) the body
surface condition that the velocity component normal to the body surface be
zero at the body; and (3) shock wave conditions to be applied at any shock
surface appearing in the flow, such that the potential is continuous through
the shock and the velocity components satisfy the small disturbance approxi-
mation to the Rankine-Hugoniot conditions at the location of the shock. These
requirements lead for slender shapes to the following condition on 4 for
free-air flows:

0= (4)

(n + an 3) + n 2 y + n 3 GzIbod = [(n 1 + on 3 ) + na body = 0 (5)

U B sbock ý 0,

(I _ M2 ( +l)< >1 a + + [kýflz hk = 0 (6)

where n = in 1 + jn 2 + kn 3 is the unit normal to the body surface, (n 1 ,n 2 ,n3)
are the direction cosines of n with respect to the (x,y,z) axes and the
symbols a D and < > signify the difference and the mean, respectively, of
the enclosed quantity on the two sides of the shock surface.

TRANSONIC EQUIVALENCE RULE FOR THICKNESS DOMINATED FLOWS

The transonic equivalence rule (TER) was developed initially in the fouiii,
now known as the cla,: £al or thickness-dominated limit, by Oswatitsch6,7 for
thin nonlifting wings, and extended later to moderately lifting wingsp and
slender configurations of arbitrary cross section 3 . Subsequent extensions
of the rule,5,) to include situations where the lift is significant both
revealed its dependence on lift as well as clarified the classical limit
and range of validity. In esserce, the rule provides the basis for greatly
simplifying the calculation of transonic flows past a special but aero-
dynamically important class of three-dimensional configurations. It accom-
plishes this by recognizing that the structure of transonic flows past
slender shapes in the vicinity of M I i consists of two distinct but
coupled domains whose governing equations and boundary conditions are signif-
icantly easier to solve than the original equations, Equations (2) and (4)-
(6). For flows at low to moderate lift conditions, such as those typical
for stable projectile flight, the solution domains consist of an inner region
governing by a linear equation, the same as in slender-body theory, and an
outer nonlineaý region consisting of the axisymmetric flow about an "equiva-
lent" nonlifting body of revolution having the same longitudinal distribution
of cross-sectional area.

The theoretical essentials of the equivalence rule for thickness-domi-
nated flows past slender configuraitons are illustrated in Figure 4, which
displays the decomposition of the flow into its first-order inner and outer
components, and the resulting uniformly valid composite solution; that is

= + +) +(7)
4 2,a 2,t 2,w +(B ,B
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1 1.

Ii Here each component of q, has the meaning indicated in Figure 4. The first-
order lift (¢2 thickness (•2,t), and rotation (ý2 .) inner solutions
describe, respectively, the translating, expanding ana rotating cross
section in the y,z plane, and satisfy the two-dimensicnal Laplace equation

q2yy + o2zz (8)

together with the no-flow boundary condition in the v,z plane at tbe body
surface at each x station. The first-order outer solution, ýB, satisfies the
axisymmetric transonic small-disturbance equation:

(l-M 2 )(B) + 0 )rr + (i/r)(ýB)r = [MN('+l)(QB )2/21 (9)

subject to an ianer boundary condition determined by the "equivalent" body
singularity source distribution. This, in turn, is determined by the outer
behavior (G2,B) of the inner solution:

limlr( B)r0 ) = lim rlnt2 ' + 2t + ] 2 w r( 2 ,B) r = S'(x)/2n (10)

where S(x) is the equivalent body cross-sectional area nondimensionalized
by Z2 . and the effects of lift and rotation are recognized to be small in
comparison to thickness effects, so that their contribution to the outer
flow is of a higher order. Shock conditions appropriate to the outer
flow are given by:

4B shock_ = 0,

~r shoboc~r~l-M2 -M 2 (y+I)<¢.Bx>]a € x• + • (rQBr)~ U shock 0 (11)

The final boundary condition for the outer 1-oblem relates to conditions
representative of the flow far from the configuration. For free-air flows
"at infinity this is given by Equation (4). Appropriate asymptotic conditions
for a bounded free-air domain or a tunnel environment are discussed in the
following section.

i ~~~Higher order TER solutions for th~tesdmntdflows beyond the

first-order terms indicated in Equations (7)-(11) can be determined syste-
matically by the methods described in References 4 and 5. These consist of
"a doubly infinite coupled series o. inner and outer solutions. In general,
the higher order inner solutions s.-isfy a Poisson equation in the crossflow
plane, with the right-hand side a known function of lower order inner solu-
tions and satisfy a linear equation with nonconstant coefficients dependent
on the first-order outer (OB) solution. For the results presented here,
only the first-order components are employed.

OUTER FLOW SOLUTION

The method employed to determine the outer flow component, OB, satisfying
"Equations (9)-(11) is a finite-difference SLOR procedure using Murman-Cole
type-dependent difference operatorslD1 2 . To realize the calculation, we have
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employed the following fully conservative form of Equation (9):

[n(K, - x /2)) + IN I t 0 (12)

where

(l/,V• (X)) (X,r). 1 = (1+-H)/0--)('+l), n = i'-,,+I r (13)

and i signities the thickness ratio of the equivalent body. The finite-
difference form of the equation actually solved is that suggested by
Jamesonil in terms of a correction potential. Additionally, a pseudotime
term of the form -• (At/Ax)tBxt was added to enhance stability and speed
convergence. The inner boundary condition, Equation (10), becomes

s___
lim(nK ) S-.- (14)

where S(x) - S(x)/T?

For free-air flows, since the boundaries of the computational mesh
employed are at a finite rather than infinite distance from the origin, a
more accurate representation of the far-field potential which reflects its
asymptotic behavior should be employed rather than Equation (4). These
conditions depend, of course, upon the free-stream Mach number and are
different for subsonic, sonic, and supersonic oncoming conditions. The
appropriatc boundary conditions employed on the computational domain at the
upstream, lateral, and downstream boundaries are given in detail in
Reference 14 and are summarized in Figure 5, where both the inner an outer
conditions are provided.

Verification of the accuracy and versatility of the outer flow solution
procedure has been made by extensive comparisons with data. These results
are reportei in Reference 14 and cover a variety of different body shapes
at Mach numbers throughout and beyond the transonic range. The coiresponding
comparisons with data taken in conventional ventilated transonic tunnels :
indicated excellent agreement. .3
INNER FLOW SOLUTION

The determination of the inner flow problem consists of solving the .4
crossflow Laplace Equation (8) for the three first-order inner components,

a2 42,t and 4 2,w, corresponding to the vertical translation, expansion, 'i
ana rotaticn, respectively, of the projectile cross section in the y,z plane.
The component T 2 ,B in Equation (7) represents the outer behavior of t0. inner
solution, and for the thickness-dominated flows condsidered here is given
Eralytically by [see Eq. (10)]

B S' (x) ~r(5IP2 ,B -- 2 , - .nT( 5

For the axisymmetric portion of the projectile, the three inner solu-
tions can be determined analytically, and are
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'2 aSS(x_) in - (16)

K n r (17),t 2 T

'9- =O (18)

"Along the nonaxisymmetric boattail, general analytic expressions cannot be
given for typical cross-sectional shapes of interest to this study. Those
shapes comprise a general class of contour: formed by N(N > 3) equal-length,
flat-sided segments separated by N equal-anple circular arc segments, and

are formed by cutting planes acting on the axisymmetric projectile boattoil.
Those cutting planes are inclined at a small angle to the main projectile
axis, and result in flat surfaces being formed longitudinally on the boattail.
In general, these cutting planes may also rotate about the projectile axis

as they proceed downstream so as to provide twist to the cut surface and
thereby prevent projectile despinning. Figure 6 provides an illustration
of two such boattail shapes formed by employing three and four cutting planes.
For these shapes, the basic axisymnictric boattail was cylindrical rather than
conical, the cutting planes were not rotated, and the cutting plane angles
and axial starting locations were chosen such that the cutting planes meet
at the boattail end and result in an inscribed triangle and square, respec-
tively.

The computational method employed to determine the inner flow solutions

is a finite-element procedure. The procedure uses the Galerk-In method of
weighted residuals and employs isoparametric quadrilateral elements with
quadratic shape functions of the serendipity type. The linear, symmetric
matrix equations that result from discretization of the Laplace equation are
solved directly using Gaussian elimination. The body surface boundary
conditions for each of the three inner computational problems are summarized
"in Figure 7. In the computational procedure they are implemented via a
Neumann (flux) condition. On the outer boundary of the finite element meso,
Neumann conditions are also employed for each of the component pioblems, as

this was found to be much more convenient and of essentially equal accuracy
as the corresponding Dirichlet conditions. A typical finite element mesh
employed for these calculations is illustrated in Figure 8. That figure
displays the mesh for a body formed by three cutting planes acting on a

circular cross section such that a sectored triangular shape results in which
the circular arc segments subtend 300 angles. The mesh shown consists of

. ~Six rings extending radially outward from the body surface and having 12 ;

quadrilateral elements per ring. The radial spacing of the rings is geomet-
rical, and for the mesh illustrated here the spacing ratio was 1.4.

A series of numerical experiments were performed in order to examine.
inner solution accuracy as a function of mesh parameters, viz. number of
rings, number of elements per ring, radial mesh spacing ratio, and outer

boundary location. The results indicated that mesh configurations similar
to that shown in Figure 8 were adequate with regard to both number of rings
and elements per ring, provided that the out-r boundary was located at

approximately 8 body radii and that radial mesh spacing near the body surface
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was slightly more compact than that shown in the figure. A geometric ratio
of 2.0 was found to be satisfactory.

Figure 9 provides an indication of the typical accuracy of the finite-
element solver when applied to one of the three component inner problems.
Displayed are the surface velocity components for the contraction problem
for the 30* sectored triangular cross section shown previously in Figure 8.
The predicted velocities shown are adjusted to be relative to the local body
surface, and thus should be entirely tangential to the local surface. The
particular contraction problem solved here was for a unit contraction of the
flat segments (qn = dF/dx = --l) and with the circular arc segments stationary
0 = dRldx = 0). The surface velocity vectors are shown at the surface node
point locations. As can be seen, the velocity vectors on both the flat and
circular segments ace indeed essentially tangential to the local surface.
At the junctions of the flat and circular segments, two vectors are indicated
since for Lhose points a velocity vector can be predicted employing values of

the potential associated either with the element lying on the circular
segment or the adjacent element lying on the flat segment. Potential theory
is in fact discontinuous at those locations; and although velocities exactly
at those corner points are never used or required in any of the calculations
performed here, it is nevertheless instructive to observe the behavior of the
finite-element solver at those singular points. As is evident from the
results shown in Figure 9, the solver provides both the correct trend (high
magnitude) and direction (tangential to the surface) of the solution behavior
at those locations. From additional numerical experiments involving both an
examination of surface pressuces in the vicinity of these points, as well as
CoL~tour integrals of surfact velocity and potential about the entire cross
section (in order to determine apparent mass coefficients, see section follow-
ing, we have verified that the finite-element solver is capable of adequately
resolving the flow behavior in the vicinity of the corners and providing
rap.Ld and accurate solutions for all the inner problems for the geometries

of interest here.

LOADING CALCULATIONS

The objective of the development and application of the TER procedure
to ballistic projectiles was to provide the means for determining the 3-D
transonic flow fields about these shapes and, subsequently, the surface
pressures and the resultant steady aerodynamic forces and moments. Si nce
the primary utility of the present predictive method to projectile applica-
tions, however, is in the accurate determination of those static aerodynamic
characteristics, the calculation and subsequent integration of surface .
pressures predicted via the TER method over the entire projectile is an

undesirable intermediate, computationally-expensive step. Consistent with
the order of accuracy of the present flow solution, it is possible to
formulate a procedure based on the TER solution and slender body theory which
avoids that step and provides the axial loading distribution directly.

This procedure, known us the method of apparent masses 1 5 , relates the
kinetic energy of the fluid per unit axial length to contour integrals
involving various crossflow velocity potentials describing the translation,
rotation, etc., of the cross section and their normal gradients on the local
surface. These contour integrals are relatable to the apparent mass coeffi-
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I
cdents of the configuration cross section; and with those coefficients in
hand, the determination of the lateral force and moment distributions is
direct.

The utility of the apparent mass method is in the determination of
stability derivatives, both static and dynamic, for slender configurations.
The method has been successfully employed in tile past in a wide number of
aerodynamic applicationsl(-, particularly for missile configurations. A
detailed formulation of the method for combined upwash, side-wash, and roll
including derivations of all the important static and dynamic stability
derivatives is provided in Reference 19. Such previous applications of the
method have focused exclusively in the subsotLic and supersonic regimes

where the governing small-disturbance potential equations are linear. Since
"slender body theory is equally valid throughout the transonic regime as well,
and in fact underlies the basis of TER method, application of the apparent
mass method at transonic speeds is certainly feasible. However, a well-known
result of the classical TER mrthod,- 8 , and actually verified by experiment
for certain classes of aerodynamic configurations3, is that the loading
"distributions and hence the lateral forces and moments are independent of
oncoming Mach number. This, of course, is not the case for typical projec-
tiles, as noted in Figure 3. The reason for this discrepancy lies not in
an overall breakdown of the TER procedure, but rather in the failure to take
into account locally the large axial gradients which occur in the vicinity
of shock waves located on the body surface. These large gradients locally
violate the moderate axial gradient hypothesis inherent in the apparent mass
metthod.

Because of the deficiency of the procedure for applications at transonic
speeds is associated primarily with the behavior of the axial velocity compo-
nent in the vicinity of shock waves, we have postulated and successfully
tested the following modification of the classical apparent mass method:
(1) correct the axial velocity in the classical apparent mass formulatilon by
replacing the free-stream velocity by the local axial velocity, and (2)
apply a similar correction to the lateral velocities. Here, the axial pertur-
bation velocity component to be added locally to the free-stream velocity can
be considered as provided by the TER composite solution Equation (7). However,
since the effect we are attempting to correct for is a transonic one due to
nonlinear Mach number dependent variations in the vicinity of shock waves, and

* since the two-dimensional crossflow solutions contained in Equation (7) are
independent of M., it is sufficient Li e,,usider the local axial velocity as
augmented by the equivalent body perturbation axial velocity alone, viz.

Vx = I + PB (19)
x

In order to implement these ideas, consider the normal force loading
distribution dCN/dx for combined angle of attack, o, sideslip, B, and roll
rate, p, of a typical ballistic projectile. (Although vie have not considered
sideslip in our derivations of the TER method, it would be a straightforward
extension to do so.) The transonically corrected classical loading distribu-
tion 1 6 is given by:

12.



dC N
= 2 v [ 1 .v v + p23 P v + v2 +(20)

dx x X 1 2l ' 11 1 12 2 1 3 ] (

whe'rul

V = a + 2_2)x"

v = :(I + - (23)
x

v= ) (2+)

Here, the M.. are apparent mass coefficients determined from the following
inner flow APlution representation (see Fig. 4)

., + + ' +(25)½ = 2 3 "2,t (5

where 3,' represent crossflow potential.s for unit horizontal and vertical
translation, respectively, of the cross section, ýý represents the potential
for unit angular velocity of the cross section about thie longitudinal axis,
v1 , v2, are the transonicaliy corrected sidewash and upwash, and the normal
force coefficient is defined by

c = V ,1v2 (R2

N 2 ,, max (26)

Thus, for a projectile having a conical bnattail for which the apparent
mass coefficients are known analytically (M1l = I1-22 = 1R., ?12 = 1-3 = N11 3 =0).
at zero sidewash (P = 0) and roll rate (p = 0), thie normal force loading
distribution is given by

dC N 

_ [

dx + d" (28) B

0

1 d
C = I (xc -x) dx (29)

0 0
0
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Where xCn i tile ,.Acitulrllilg lmolilt lit Ct iltet atid tine pittcling mj oment i.2 -

dc1incpit tlll0' .l aotife ed 'iti-upi
11 t4ener.2alZ f 0 1 th11 1101naIxi.S 'mlmt:Lr ic cross_ set.ctions stuch1 as those titB

ilnL-ur',st I, h l'', tilk' a'lpl):rt- lL. nWaSS COCfjc etibtIL1 cannot. be determined anAl\- •

i tLiCally- and mu:;t bec found unrill\.Tile finlite-UICIIIet Solver described

Illst f t ' Ll' i t. . tf,,liCt'' Llit 1 ', al ltotigJ t,,'li 111.2'I anid out I 'i1ER S,,]1til
procedures are netCC''.iV• v to det'termine, the projectile loading distributitn,
viz. tile filnit e-eCIctint' t il"oate'- SO1\ver' to calculate tile apparent mass Coteffi-

Cien'ts of thl' pr-ojctile cross sc'. t ion, and the SLOR solver to calculate the
ax isyrmetric noin 1intelC transoaicr flows past the equivailent body otf rcvolut1on,

the determinaition of the dcittailcd surflcC, pressures and tieir integr a tion
OVt- tilt' body surtace is avoided.

In order t, It st till' l0adin31: proceduiCe, we have appliitd tile Method i tt
-I variett of di fferexit projectile.-. having both axisvmmetric and nonaxisvnil-
metric boattaii geometr'ic,; at Maclh numbers ti,roughouit the transonic range.
1l1I tile following section, wc provide sonic' typical results of suclI calcu-

ations, tog,'tther witii COfl11risoils With o1theri' thieoretical ilethbods and data,

RESULl

$ To examine tile applicability of tie trans•onic equivalence rule for
deteLililing tr'ans0.lic flows past balliistic projectiles, as well as to test
the validity and accuracy of tile proposed nonlinear loading procedure, we
have applied thie'se procedtures to predict the surface pressures, loading
distributions, and static aerodynamic' coefficients of a variety of different

projectiles at flow conditions throughout the transonic range. In the
following sections, we provide some selected results typical of tile projec-
tile calculations that were performed. Comparisons with data rnd as far as

possible with otlier theoretical methods are provided.

SURFACE PRESSURE2S

nstiL a-, ast Ii ,- basic validity and range of accuracy Of tle,, TENI mUlethod
"for predictinug transonic I low fields pa.nt slender bodies are concerned,
extensive comparisons of TER result!; w:th data have been made and are
provided in Reference 17. In that study, experimental results and TFE
theory were compared for body surface pressures obtained in conventional
transonic tunnels for a number of different axisymmetric and nonaxisynunetric
"shapes. The configurations included both smooth bodies as well as projectile-
like discontinuous slope shapes. Those results, which also incorporated wind
tunnel interference effects, provide the most extensive comparison of the
classical equivalence rule with experiment. They indicate good agreement.
with data, including the region near shock waves, at oncoming Mach numbers

* "throughout and beyond the transonic regime for low to moderate angles of
attack.

*Here, we provide some further results for specific projectile shapes.
In Figure 10 we have exhibited TER results for the surface pressure coeffi-
cient on a secant ogive nose, straight cylindrical midbouy, and 7' conical
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boattail projectile at M - 0.94 and a - 40. These results di¢jplay typical
axial and azimuthal surface pressure variations characteristic of transonic
flows past standard ballistic projectile shupes. The most notable feature
of the results in Figure 10 is the prominent expansion and compression spikcs
in the vicinity of the noselmidbody and midbody/boattail junctures; and are
associated with the acceleration and deceleration of the flow in those
regions where the surface geometry is discontinueu.

The TER results display the surface pressure along longitudinal rays
at the windward, leeward, and midbUdy azimuLhal positions. For this axisym-
metric boattail projectile shape, the inner flow solutions are provided
analytically everywhere by Equations (16)-(18). The outer flow equivalent
body finite-difference solution used in theje results employed an (x,r) mesht
density of 140'40 points with 100 equally spaced points on the oody. The r
grid as well as the x grid ahead and behind the body were expanded using a-
grid ratio of 1.2:1. The x mesh extended 2 b-ody lengths ahead of the nose
and 2 body lengths behind the tail of the body, and the location of the first
radial grid line was at r = 1/2. The r mesh extended laterally to 5 body
lengths. This grid was the standard onie employed in determining all of the
equivalent body solutions reported here.

Also shown in Figure 10 arc Reklis's 1 8 three-dimensional transonic small-
disturbance results for pressures along the windward ray. The agreement
between the two theoretical methods is quite good everywhere, with the only
exception being some minor disagreement in the pressure spike regions near
the nose/midbudy and midbody/boat tail junctions. At those locacions, the
TER results predict a slightly higher and eailier expansion. However. it is
probable that even these slight discrepancies are attributable to different
grid densities and/or boundary condition treatment in those locations rather
than from the difference in the level-of-approximation of the two methods.

LOADING DISTRIBUTIONS

In order to check and verify the proposed loading calculation method
for applications to ballistic projectiles, we have employed it to predict
loadings on a number of different projectile shapes for which results from
other theoretical methods are available. Figure 1.1 presents a comparison
of results for the normal force distribution oii an idealized 5.6 caliber
length M1549 projectile at t = 0.95 and i = l. For these comparisons, the
geometry of the actual projectile shape has been simplified by considering
the nose as sharp, by neglecting the rotatiig bands, and by simulating the *

afterbody wake geometry by extending the conical boattail beyond the actual
projectile length.

In addition to the present method, results from the three--dimensional
rransonic small-disturbance (3-P TSD) procedure of Reklish, from three-
,imensional Euler equations calculations] 9 , and from slender body theory
are provided in the figure. On the ogive nose, the present method and the
Euler equation result compare quite closely, and are only moderately
removed from the slender body result. However, the 3-D TSD results predict
a noticeably higher loading. On the cylindrical midbody, the present method
indicates a slight positive loading at points beyond the immediate vicinity
of the ogive/midbody juncture; whereas, the Euler results predict a negative
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loading over the majority of the cylindrical midbody, and the 3-D TSD results
show essentially no loading at all. The slender body loading along that
unchanging cylindrical cross section is, of course, zero.

As the discontinuity in surface slope at the midbody/boattail juncture
is approached and passed, the present method displays first a large positive
then negative loading spike corresponding to the rapid flow expansion and
compression at the location. Downstream of that junction, the present theory

- displays another sharp spike, due to the boattail shock. Once beyond the
boattail shock, the present method essentially provides the slender body
result. Along the boattail, the corresponding 3-D TSD result displays no
expansion spikes at the boattail junction. However, similar to the present
theory, that result does indicate the same strong downward loading spike
on the main boattail section due to the boattail shock, although that peak
is displaced slightly rearward from the present theory prediction. With
regard to the Euler equation prediciton on the boattail, a positive loading
is indicated just beyond the boattail juncture and then an increasing nega-
tive loading on the remainder of the boattail. In the calculation, the
boattail was extended to x/D - 6.5 at which point for numerical convenience
a spherical cap was added to close the body. That spherical cap, which was
located sufficiently far downstream so as not to influence the solution on
the actual projectile, locally induces a sharp discontinuous behavior which
is to be disregarded. At first glance, the Euler result appears to be quite
different from the present theory and the 3-D TSD result over the major
portion of the boattail. That is in fact not the case since the Euler
prediction was carried out on a much coarser computational grid than both
the present method dLLd the 3-D TSD calculation. That has resulted in a

broad smearing of the bcattail shock, and it is felt that increasing the
grid density would result in good correspondence between the Euler result
and the present method. In particular, we observe that as in the present
result, a positive expansion loading exists in the Euler prediction near the
boattail junction. Finally, with regard to the overall agreement evident ,
from this comparison, we note that the present loading method is able to
capture all of the critical features of the loading behavior for this typical
projectile geometry as predicted by other more accurate but computationally
far more expensive procedures.

In Figure 12, we present an additional loading comparison between the
present method and Euler equation solutions'9. These are intended to
illustrate the loading behavior both as a function of Mach number throughout
the transonic range and also for extremes of projectile geometry. That
figure provides a comparison of the normal force distribution on a slender
12 caliber length projectile having a 5 caliber cylinder midbody, and 2
caliber 10 conical boattail. For the Euler calculations, a small spherical
cap was added at the base of the projectile, while for the present method,
the conical base was exttnded downstream. Results are displayed for
M - 0.75, 0.90, 0.95 at a - 10. As with the results of Figure 11, the
present method and the Euler predictions are essentially identical on the
ogive nose for all three Mach numbers. On the cylindrical midbody, the
comparison is also quite good at all Mach numbers for points ahead of the
vicinity of the midbody/boattail junction. Near that junction, as well as
on the boattail, some disagreement occurs. At M. = 0.75, both methods

"* indicate first a rapid positive then negative loading near the boattail
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junction, with the loading remaining negative but gradually recovering toward
zero along the boattail. At M = 0.90, the present method essentially
accentuates that behavior, while the Euler result indicates instead a
rapid negative then positive loading near the boattail junciton, and then
an increasing negative loading algong the boattail. This behavior of the
Euler result is very similar to that in Figure 11, and reflects again a
broad shock smearing due to gria coarseness.

Consequently, based on these and other related comparisons, we have
concluded that the proposed transonically-corrected loading method is able
to capture the primary nonlinear inviscid transonic effects which exist on
typical ballistic projectiles.

STATIC AERODYNAMIC COEFFICIENTS FOR VARIOUS BOATTAIL PROJECTILES

The ultimate objective of the development of the TER solution procedure
and the transonically modified loading method is in the prediction of the
static aerodynamic coefficients of various boattail ballistic projectiles.
ln Figures 13-19 we provide results of the application of these procedures
to a variety of different projectile shapes at conditions throughout th0

transonic regime.

Figure 13 exhibits a comparison of results from the present theory with
3-I) TSD results and some limited data1 for the variation of the overturning
pitching moment coefficient Cm with oncoming Mach number M for an idealized
N349 projectile having various concial boattail lengths. For both theoretical
results, the actual nose was replaced by a sharp one of equal length, the
rotating bands were neglected so that the cylindrical midbody was smooth,
and the afterbody wake geometry was simulated by extending the conical
boattail downstream. Three different boattail lengths on the basic projec-

tile shape were considered, i.e., 'bt = 0.579, 0.437, and 0.242, with ta
longest being that of the actual projectile. For the comparisons at

bt = 0.579, indicated as solid lines, both theoretical methods displayi essentially identical variation with N. and peak C,, value, but With the

S3-1 TSD results displaced forward in M by approximately 0.05. The range
data indicate a slightly higher peak value, occuring at the same Mach number
predicted by the present method.

The variation of the theoretical solutions for the two shorter boattails
is noteworthy. Those results predict the occurrence of lower and earlier
peaks in C. with decreasing boattail length. This is consistent with both
experimental findings and the fact that as the boattaI1 length decreases
the shock in that region will move off the boattail and into the wake at a
lower Macl number. Additionally, there will exist a geometrically shorter
moment arm for the negative loading created by the shock to act upon, thereby
reducing the peak overturning moment. With regard to the comparisons between
the two theoretical methods for the shorter boattail length, at t bt = 0.437
the prediction of peak Cm is again quite close, with the present theory
peak displaced rearward in M,. At kbt = 0.242, however, in addition to the
rearward displacement of peak C values, the present method predicts a
somewhat lower peak value as weTi. Without further details about the 3-D
TSD results, it is difficult to identify precisely the cause of disagree-
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ments. Clearly, however, both the variation trends and the general levels
of the results are in quite reasonable agreement.

To examine the effect of various idealizations of projectile geometry
that were made to facilitate some of these initial conditions, we have
performed several parametric studies involving the independent variation of
selected projectile geometry' parameters. These have primarily involved
investigating the idealizations of afterbody wake geometry and approximation
of nose goemetry, although a preliminary investigation of bore rider influence
has also been mcade. Figure 14 provides the effect of different nose and
afterbody wake geometry on thu variation of Cm' with M for the idealized
M549 projectile, for which results for the sharp nose, and conical wake
geometry model were presented previously in Figure 13. The four theoretical
results include the following geometry combinations: (i) sharp nose, cylin-
drical wake, (ii) sharp nose, conical wake, (iii) blunt nose, conical wake,
and (iv) blunt nose with fuze, conical wake. Limited range dataI are also
presented for the actual projectile. We note that the difference between
the cylindrical and conical wake mode] results in the largest change in Cm ,
with the continuous conical wake model most certainly being the more accurate
simulation of the actual afterbody wake flow rather than the discontinuous
cylindrical model. The shift in peak CmU location and the change to r more
peaky behavior in the vicinity of tahe maximum resulting from the change
from cylindrical to conical wake model confirms this, and exhibits excellent
agreement with the range data. The addition of the blurt nose to the
conical wake model projectile results in an upward shift in magnitude of Cmi,
but ito es iia utlediference ill Lielld ftoilu thie shiLtp nose l eSult, anld CoitILu•S

to bring the tlheoretieal prediction in closer accord with the data near
the maximum. The final addition of the fuze geometry to the blunt nose
"results in a similar but smaller change. The importance of modeling as much
'as possible of the geometric detail of the actual projectile, however, is
clear.

In Figure 15, we present a similar comparison of theoretical results
"and range data for Cm versus M for a T388 projectile 20 . That standard
projectile has a 5.58acaliber overall length, 2.90 caliber ogive nose, and
0.59 caliber conical boattail with 7037' boattail angle. Theoretical
predictions are presented based on a (i) sharp nose, cylindrical wake, (ii)
sharp nose, conical wake, and (iii) blunt nose, conical wake. As with the

- M549 projectile, the change from cylindrical to conicaliwake model brings
the predicted results into almost exact agreement with the range data.
Addition of the blunt nose in the theoretical calculation for this- projectile

results in a downward shift in Cm level, opposite to that of the M549, and
indicating the interdependence of these geometric changes.

In Figure 16, we provide the final comparison between the present
theory and range data for a standard conical boattail projectile. That

* -figure compares theoretical results with both range and tunnel data 21 for an
improved 5"/54 projectile. This projectile is 5.20 calibers in length, with
a 2.75 caliber ogive nose, and 1 caliber conical boattail with 7.50 boattail4 angle. The theoretical calculations exhibited are based on a conical after-
"body wake model and blunt nose with fuze geometry included. Exhibited in
the figure is the Cm versus M variation from M 0.5 to 2.0, demonstrating .1
the capability of the method throughout and beyond the transonic regime.
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We note that the theoretical results agree very well for both overall trend
and location of the peak pitching moment, with the magnitude and the predicted
result being slightly higher throughout the entire range than the data
indicate.

For this projectile, we performed several additional calculations to
determine whether wind tunnel interference effects were present in the data.
Accordingly, we determined the TER equivalent body outer flow solution subject
to both a solid and various porous wall boundary conditions. These calcula-
tions were performed at Mach numbers at and in the vicinity of the Cm peak.
All of these calculations resulted in indiscernible changes from the tree air
result provided in Figure 16. We conclude that the discrepancy in C level
is most likely due to the midbody waisting on the actual projectile2, which
was not modeled in the theoretical calculations.

In the next three figures, Figures 17-19, we present results which
demonstrate the capability of the present predictive method to treat a
variety of different projectile boattail shapes, both axisymmetric and non-
axisymmetric. Figure 17 presents the predicted variation of Cm, with M. for
the four different boattail shape projectiles shown previously ?n Figures 1
and 6, plus an additional conical boattail projectile with shorter boattail

(Zb = 0.5) length. All of these projectiles have a 5 caliber overall length
"and identical 2 caliber sharp ogive nose geometry. Consequently, the results
presented illustrate, in adesign sense, the effect on Cm of varying the boat-
tail shape through a wide range of geometries. We note NhaL the 1 caliber
conical boattail projectile exhibits the highest Cm. and thus is the worst
choice from a stability design criterion. Decreasing tht conical boattail
length to 0.5 calibers improves the situation somewhat, but not significantly ]
The square boattail further improves the situation, but the triangular boat-
tail, of these four shapes, provides the best result for minimum peak Cm.
These results are in direct correspondence with the experimental results of
Reference 2. Although the cylindrical boattail exhibits the lowest peak Cm
its high drag and consequent low range make it an undesirable candidate shape.

In Figure 18, we present the corresponding results for the normal force

coefficient CN for these same five shapes. We note the prediction that the
longer conical aboattail has the lowest lift of all the projectiles, due to
the strong negat've iUcaU.,L on the boattail section.

In Figure 19, we exhibit the surface pressure drag coefficient variation
with M. for these same projectiles. This calculated drag represents the wave
drag of these various shapes. In order to determine the total inviscid drag,
those results must be augmented by the base pressure drag. This could be
done within the framework of the present computational procedure either
from a correlation of base pressure drag and inviscid base pressure, or
through a boundary layer/wake computation coupled to the inviscid flow
prediction. The point of presenting these results is to indicate the means
for a first-order approximation of the projectile drag is feasible with the
present theoretical procedure.

Finally, we note the computational efficiency of the present method.
A complete calculation (TER calculation plus loading determination) requires
less than 30 seconds CPU time on a CDC 7600 for a typical projectile at a
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specified M. As a typical example, regard to the theoretical predictions of
Cm, CN,, and CD provided in Figures 17 through 19 involving the 5 different
boattai projectiles. The separate points on each of the curves indicate the
individual calculations made and total 110 separate TER and loading solutions.
Computational time for all of these cases was less than 30 minutes of CDC 7600
CPU time.

I POTENTIAL APPLICATION TO MISSILES AT HIGH ANGLE OF ATTACK

In this section, we point out the potential utility of the concepts and
procedures developed here to applications involving current missile configura-
tions and requirements. In the current applications of the TER procedure to
ballistic projectiles, attention was focused on the low to moderate lift situ-
ation (thickness-dominated flows). This was done because that lift range is

S- the necessary operating regime for these shapes, since current ballistic
projectiles are spin stabilized and have no means (no lifing surfaces) of
recovering from a high angle of attack condition. For applications to present-
design missiles, however, which often employ both canard and tail surfaces, the
control situation is quite different and the operation requirements imposed
usually require capability of operating at high angle of attack. Under such
conditions, the primary nonlinear effects 22 arise from compressibility effects
and the various vortical flows (nose, canard, afterbody, and tail vortex
systems) generated by different segments of the missile surface. At transonic
conditions, both of these nonlinear effects can be treated by employing the
lift-dominated limiting form the TER. Figure 20 provides an illustration
of the application of the TER to such configurations at high angle of attack
transonic conditions; together with the decomposition of the flow into its

a. various inner and outer components. In chat illustration, for clarity of
presentation, we have omitted indicating the nose and afterbody vortices,

. -and have only shown the canard trailing vortices. In the actual TER appli-
cation and calculation, all of these vortical flows would be accounted for.

As shown in Figure 20, the various component problems in the inner region
"now consist of both vertical and horizontal translation of the cross section

* . corresponding to upwash and sidewash, the crossflow vortical flow field con-
sisting of all vortices generated upstream of a particular longitudinal station,

1 - and the familiar thickness problem, whereas the outer flow now consists of
axial flow past both an equivalent source and doublet distribution in which

" L the source distribution consists of the equivalent area source distribution
augmented by additional source-like terms due to the axial and spanwise lilt
distribution5 .

Although the outer problem is now three-dimensional, the TER provides a
I'I means for solution that is nevertheless significantly simpler than solving the

full nonlinear three-dimensional flow problem past the actual configuration.
In light of the success of the TER method for ballistic projectile applications,
"it is felt that the potential of the method for providing an accurate and com-

-.- putationally-efficient solution to the transonic high angle of attack slender
missile problem is high.

CONCLUDING REMARKS

The development of a theoretical predictive method for determining the
steady inviscid aerodynamic behavior of ballistic projectiles throughout the
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transonic regime is described. The emphasis of the work was directed toward
establishing the capability for investigating the now standard conical boat-
tail projectiles as well as a variety of new shapes characteristic of the non-
axisymmetric boattail projectiles under current study by the U.S. Army. The
final objective is the development of a rational modeling procedure for the
investigation of the transonic aerodynamic effects of incorporating different
boattail and body geometries into ballistic projectile design, with a view
toward optimizing the aerodynamic performance of these shapes, such as
increasing range and/or payload while simultaneously avoiding stability
problems.

The theoretical analysis is based on the transonic equivalence rule (TER)
and includes a finite-difference SLOR procedure for determining the nonlinear
axisymmetric outer (far field) flow about the "equivalent" body of revolution,
and a two-dimensional finite-element solver for providing general solutions to
the inner (near field) cross-flow problem for the arbitrary geometries charac-
teristic of the new boattail projectiles. The ultimate utility of the predic-
tive method is in the accurate determination of the static aerodynamic charac-
teristics of these projectiles, specifically the lift and destabilizing pitch-
ing moment. Toward that end, a new nonlinear loading calculation procedure
which incorporates transonic effects has been formulated and tested. The
technique is based on apparent mass concepts and employs the finite-element
inner crossflow solver to determine the appropriate apparent mass coefficients
and uses the nonlinear outer TER solution for the axisymmetric flow about the
equivalent body to account for nonlinear effects due to shock waves.

Results are presented for a wide vatiety of projectile shapes, having
both axisymmetric and nonaxisymmetric boattail geometries, and demonstrates
the ability of the procedure to predict succossfully the observed range and
tunnel variations of pitching moment and normal force throughout the transonic
range. Additional calculations illustrating the separate effects of different
geometry models to simulate the afterbody wake and nose bluntness including
fuze geometries are presented.

ACKNOWLEDGEMENT

This research was supported by the U.S. Army Research Office under
Contract DAAG29-77-C-0038 with Dr. Robert Singleton as Technical Monitor.

REFERENCES

1. Reklis, R. P., Sturek, W. V., and Bailey, F. R.: Computation of Tran-
sonic Flow Past Projectiles at Angle of Attack. AIAA Paper No. 78-1182,
July 1978.

2. Platou, A. S.: Improved Projectile Boattail. AIAA Jour., Vol. 12, Dec.
1975, pp. 727-732.

3. Heaslet, M. A. and Spreiter, J. R.: Three-Dimensioncl Transonic Flow
Theory Applied to Slender Wings and Bodies. NACA Rept. 1318, 1957.

4. Chenr, H. K. and Hafez, M. M.: Equivalence Rule and Transonic Flows
Involving Lift. Dept. of Aero. Eng. Rept. USCAE 124, Univ. of Southern

1-216 -



I IL
California, School of Engineering, Apr. 1973.

5. Cheng, H. K. and Hafez, M. N.: Transonic Equivalence Rule: A Nonlinear
Problem Involving Lift. J. of Fluid Mech., Vol. 72, 1975, pp. 161-188.

6. Oswatitsch, K.: Die Theoretischen Arbeiten Uber schalinahe Strbmungen
am Flugtechnischen Institut der Kungl. Techniska itiskolan, Stockholm.
Eighth Inter'l Congress on Theoretical and Applied Mechanics, Istanbul,3 1952, (1953) pp. 261-262.

7. Oswatitsch, K.: The Area Rule. Applied Mech. Reviews, Vol. 10, Dec.

1957, pp. 543-545.

8. Spreiter, 3. R.: Theoretical and Experimental Analysis of Transonic
Flow Fields. NACA-Univ. Conf. on Aerodynamics, Construction, and

Propulsion II, "Aerodynamics," 1954, pp. 18-1 - 18-17.

9. Barnwell, R. W.: Transonic Flow About Lifting Configuiations. AIAAI Jour., Vol. 11, May 1973, pp. 764-766.

W, 10. Bailey, F. R.: The Numerical Calculation of Transonic Flow about

Slender Bodies of Revolution. NASA TND-6582, Dec. 1971.

11. Krupp, J. A. and Murman, E. M.: Computation of Transonic Flows Past

Lifting Airfoils arid Slender Bodies. AIAA Jour., Vol. 10, July 1972,
" • pp. 880-886.

12. Murman, E. M.: Analysis of Embedded Shock Waves Calculated by Relaxation

SMethods. AIAA Jour., Vol. 12, Nay 1974, pp. 626-633.

" 13. Jameson, A.: Transonic Flow Calcualtions. VKI Lecture Series 87,
Computational Fluid Dynamics, von KdrmAn Institute for Fluid Dynamics,
Rhode-St. Genesse, Belgium, Mar. 1976.

14. Stahara, S. S. and Spreiter, J. R.: Transonic Wind Tunnel Interference
Assessment-Axisymmetric Flows. AIAA Jour., Vol. 18, Jan. 1980, pp. 63-71.

15. Brysoii, A. E., Jr.: Stability Derivatives for a Slender Missile with
Application to a Wing-Body-Vertical Tail Configuration. J. Aeronaut.
Sci., Vol. 20, No. 5, 1953, pp. 297-308.

16. Nielsen, J. N.: Missile Aerodynamics. McGraw-Hill, New York, 1960.

17. Stahara, S. S. and Spreiter, J. R.: Transonic Flows Past Nonaxisynimetric
Slender Shapes - Classical Equivalence Rule Analysis. AIAA Jour., Vol. it
17, No. 5, Mar. 1979, pp. 245-252.

"18. Rekiis, R. P., Danberg, J. F., and Ingu, G. R.: Boundary Layer Flows

on Transonic Projectiles. AIAA Paper No. 79-1551, July 1979.

19. Klopfer, G. H. and Chaussee, D. S.: Numerical Solution of Three Dimen- 9
sional Transonic Flows Around Axisymmetric Bodies at Angle of Attack.V ' Nielsen Engineering & Research, Inc. TR 176, Feb. 1979. j

In 1-217



20. Krial, K. S. and MacAllister, L. C.: Aerodynamic Properties of a Family

of Shell of Similar Shape--3O5mm X308E5, XK308E6, T388 and 155mi T387.
BRL Memo Rept. No. 2023, Feb. 1970. '

21. Ohlmeyer, E. J.: Dynamic Stability of the Improved 5"/54 Projectile.
NWL Tech. Rept. TR-2871, Dec. 1972. -*

22. Nielsen, J. N.: Wright Brothers Lectureship in Aeronautics, Missile '

Aerodynamics -Past, Present, and Future. ALAA Paper No. 79-1819,
Aug. 1979.

1-218



Iý 0Q
-4(I
-4 -

0*0

'-4 t

I. "-4 0-

S4-3 .

1 1)
c- '

1-219



aM- 0.898

b. M-= 0.957

cM T 1.033

FL gil~t 2 S~i~iduwginplis l }j ist i t 'E tt 1

Vcl I .I'I I c t llr 'Ii i c " iho IIo itI S ma io I i0 I I' I I " "11lit

T-220



3H ca

"1.. .-
-4 4

-0

-40 0 u

0 P.

0.I

n u

-4 0

1-221



MrM ([+I)
M C , y ( -• . • + + • = I •

S• =xx Byy •z z [Xx

+ 0
9yy ZZWIZZ

VTBODY

,WITH -SAME S(x)
AS ACTUAL
CONFI GURAT.ION

~ +, + -q'h + B
UNIFORMILY INNER SOLUTION OUTER LIMIT OUTERVALiD A OF INNER SOLUTIONCOMPOSITE 

2 SOLUTION
SOLUTISON

I-

Figure 4 Illustration of the classical transonic
equivalence rule for slender configurations

1-222



; - -M

I
I!

x TV'o M I M O; < I

0 C70; M, - I

"•xI 0 xN

WIND TUNNEL

"(7) 2(I

V. I-

FREE AIR

Figure 5 Summary of boundary conditions for
S~outer flow computational problem.

-1-223

L .**M<



oo 0))

u 0

>-UJ (U

ICC
00

cc r0
w 0 -

- Ij
0 cz

CL-22E44



I

CROSSFLOW: 
CONTRACTION:~ d

|z

n dx
- , nso ° "-

"* I(B)

(A) TWIST: #2

On wreq i)
r

()I'

(C)

Figure 7 Body surface boundary conditions for jiner

i flow computational problem.

1-225
I-
""A- 

ti~



9. 9 \, K.•

" N

N--

1-2-A

-9-



* I.

' VI

6m ... . .. ... "

I

Figure 9 Body surface crossflow velocities predicted

S• ~by finite-element solver for a typical con-
traction inner problem, viewed relative

I' ~to local surface,.l

11-22

pi-

a1....



-0.6 I I I I

THEORY

-0.5 PRESENT 3-D TSD

WINDWARD

-0.4 -MIDBODY ---

LEEWARD .

-0.3 2

-0.- .

0o "1 ---

0 0. 1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

° o . -- •

Figure 10 Prediction of surface pressures on a
secant ogivelcylinder/7' conical. boattail

projectile at M 0.94, - :;

1-228



0.06 1 ,-- 4

PRESENT METHOD

* 0.05 3-D TSD

EULER
I 0.04- SLENDER BODY

II

-0.03-

] ~~0.02

1Q0

"• dx 0 '/ "

-0.02 -

II

0-00

-05 0 1 2 3 4 5 6 7d

X/D
Figure 11 Comparison of present loading method with

"other theoretical methods for the normal force

loading distribution on an idealized M549
projectile at M = 0.95, a = 1'.

1-229



0.06 - PRESENT METHOD

005 - EULER0.05-

0.04

0.03 -

'0.01
ii d%

dx

0.01.

/0.022'] M,.= 0.75 M"=.o II90

"0-0.04
"0"- 1 2 3 4 5 6 9 10 11 12 0 1 2 35 4 5 69 10 11 12

x/O x/D:

Q07

0.06 )- ' '.

0-050
0.04 -

-003- M 0.95

002-

-0.01 r

-0.01-.

-QOo 5 M.- 0.95
-0.04 "

0 1 2 3 4 5 69 10 II 12.
x/D '

Figure 12 Comparison of present loading method with
3-D Euler equation results for the normal force
loading distribution on a slender 12 caliber

length projectile at various transonic
Mach numbers.

1-230



00

H 41-

:3 0 *-t

U." 0:3'

I~L 412(

In0~ 0 w c- I

I ~o ci 0)

0 4.j 0

10) 4 020

00HdOf.

oq- ~ -

0)

U--4

1-23

low



IAF C*4

S I , I *A

CO4 44 r

* , 0-a)

z 
eli

0 0nrAr 0 c

00:

C--)

wI

1-232



CI

w 0.

> Wn
9 C:

44 LO-

LiD a) r)-

4,
Cl) )- (-'

* U l)> - -

a.. 0-- C'

OD- 0 0-

1-233



-INU

I - 4UI 0

WO w

-Z %a

0Iý --
U.4 0

LD I- 4

t-23



II
I

0
CO C

- I"

I~f4 04J

I I•I• 1~ IJ

4.J

qW'H

'44- (W•

,. . ;. -4

0- (1 ) r

~13 '-.

1-235

" i i'1 o .. .. i l1• ... - :



ic0

0 cH4

FF

G-O $11-

rj ,-4 U

ci >

-0 00Q)

-10

1--236



1 _ 0

Q) Q
I-v.

0  I.- (1 )

I-- (U

* I Sc

O41

C- 0

kw C) 1
14 -

- I oW

C~~J- C)l in 0

0 ~-
IN31314J303~~j M1 -H~tdX~n

1-3



r4I

+ 0 d) C:

V 1) 
4J

-- CU C/1

4-0 C)
-0

0~ 0

-n4o,
C:'E

> ~~-4 0 r-

-Er 

0 -. 00w

NN
CN 1(04

cIl.4C

N5 -

BA- _ __ _1C

L-~ 0cu 44 1-
x a: -H 0

IH23$


